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Relation between ‘spin’ and ‘orbital’ angular momenta in 
classical fieldsl 

D S Phillips and H Schiff 
Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, 
Alberta, Canada T6G 251 

Received 30 June 1978 

Abstract. For a scalar field interacting with its associated electromagnetic field the ‘orbital’ 
and ‘spin‘ angular momenta are shown to be proportional. An appropriate divergence 
added to the Lagrangian ensures that the ‘orbital’ part is zero in the zero-momentum frame. 

Current interest in classical fields, especially with regard to extended objects, leads 
naturally to considerations of the formulation of the angular momentum. It is well 
known that the division of the total angular momentum into an ‘orbital’ part and a ‘spin’ 
part is not unique in classical field theories. Indeed, as Belinfante (1940) has shown, two 
different Lagrangians generating the same field equations can give a different splitting 
of the total angular momentum. In addition, for a gauge-invariant system the splitting 
depends in general on the choice of gauge. These ambiguities are highlighted by the fact 
that the so called ‘orbital’ angular momentum is not necessarily zero in the zero- 
momentum frame. 

In this paper we show that for Lagrangians involving the interaction of a scalar field 
with its associated electromagnetic field the ‘orbital’ and ‘spin’ angular momenta are 
actually proportional. This then allows us to make the ‘orbital’ part zero in the 
zero-momentum frame by adding an appropriate divergence to the Lagrangian. 

Consider the Lagrangian (c  = 1, x4 = it) 

2 = 2 E M  + 9 + Y 

where the electromagnetic part is given by 

 EM = -sF, ,  1 2  

and 

2 = 9 ( u ,  U, w, 2 I ,  4’)  
is a function of the Lorentz invariants 

2 2 
U =A,, ,  U = I(*:,) w = A ,  z = A&!, 

where 4‘ ( i  = 1 , 2 )  is a charged scalar field. The only requirement on the functional 
form of 2 is that sufficiently localised regular static solutions exist, which then define the 
rest-frame of the system. 
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Also included in the Lagrangian is the pure divergence 

2’ = K (U - A,, ,A ,,, 1 = K a, (A,A - A ,All,v 1 
where K is an arbitrary constant. 

The total angular momentum can be written as 

J k  = Lk + s k  

where the ‘orbital’ part 

T,, being the canonical energy-momentum tensor 

and the ‘spin’ part for this system 

Using 

one can write, for static solutions, on the hypersurface x4 = constant with A 4  = i4, 

so that (1) and (3) become (da4 = -i d3x) 

To show that ( 6 )  and (7) are proportional we will need the field equations for A,. 
Making use of (4) we find, for the static case, 

b,,, + 2(a2/aw)4 = 0. (9 )  

The explicit dependence of (8) on K is only apparent; it is cancelled by the 
contribution from (d=Y’/t~u),~. Adding A m  times (9) to 4 times (8) and integrating gives 
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Thus, using ( 1 0 )  we can express ( 6 )  as 

Consider now, in turn, each of the three terms in ( 1 1 ) .  The term multiplied by 
( 1  - 2 K )  can be written as 

-Ek lm x i ( 4 A n , m ) , n  d3x = - 6 k l m  I [ ( x M n , m ) . n  - ( 4 A / ) , m  + + . m A l I  d3x I 
where use has been made of (7). 

The second term in ( 1  1 )  is 

where, again, we have used (7). 
Substituting ( 1 2 ) ,  ( 1 3 )  and ( 1 4 )  into the expression ( 6 )  for L k  gives 

-ck lm [ { x l [ ( l  - 2 K ) @ n , m  - 4 A m . n  + A m 4 , n l } , n  d3X* ( 1 5 )  

The integrals appearing in ( 1 5 )  can all be converted to surface integrals at spatial 
infinity and will therefore vanish if the fields A,, and +’ go to zero fast enough. For 
example, if, as r + m, 4 - l / r ,  A goes to zero faster than l / r  and aZ /au  goes to zero 
faster than l / r z ,  then the integrals vanish. Thus for time-independent, sufficiently 
localised solutions 

We note that the total angular momentum 

is independent of K as required. 
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Finally, it is evident from (16) that, for non-zero Sk, the choice K = $ makes Lk = 0 
and Sk then represents the total intrinsic angular momentum of the system. 
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